Effects of 3-O-methyldopa, L-3,4-dihydroxyphenylalanine metabolite, on locomotor activity and dopamine turnover in rats.

نویسندگان

  • Yoritaka Onzawa
  • Yasuhiro Kimura
  • Kengo Uzuhashi
  • Megumi Shirasuna
  • Tasuku Hirosawa
  • Takanori Taogoshi
  • Kenji Kihira
چکیده

It has been well known that 3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA) formed by catechol O-methyltransferase (COMT), and 3-OMD blood level often reaches higher than physiological level in Parkinson's disease (PD) patients receiving long term L-DOPA therapy. However, the physiological role of 3-OMD has not been well understood. Therefore, in order to clarify the effects of 3-OMD on physiological function, we examined the behavioral alteration in rats based on locomotor activity, and measured dopamine (DA) and its metabolites levels in rats at the same time after 3-OMD subchronic administration. The study results showed that repeated administrations of 3-OMD increased its blood and the striatum tissue levels in those rats, and decreased locomotor activity in a dose dependent manner. Although 3-OMD subchronic administration showed no significant change in DA level in the striatum, DA metabolite levels, such as 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were significantly decreased. After 3-OMD washout period (7 d), locomotor activity and DA turnover in those rats returned to normal levels. Furthermore, locomotor activity and DA turnover decreased by 3-OMD administration were recovered to normal level by acute L-DOPA administration. These results suggested that 3-OMD affect to locomotor activity via DA neuron system. In conclusion, 3-OMD itself may have a disadvantage in PD patients receiving L-DOPA therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lithium: modification of behavioral activity and brain biogenic amines in developing hyperthyroid rats.

Daily treatment of neonatal rats with 1-triiodothyronine for 30 days increased locomotor activity as well as the synthesis and presumably, release of brain norepinephrine, dopamine and 5-hydroxytryptamine. Whereas administration of lithium carbonate (60 mg/kg) to normal rats for 10 days, beginning from the 20th day of age, produced no significant effect, this antimanic drug significantly decrea...

متن کامل

Influence of Striatal Astrocyte Dysfunction on Locomotor Activity in Dopamine-Depleted Rats

Introduction: Astrocyte dysfunction is the common pathology resulting in failure of astrocyte-neuron interaction in neurological diseases, including Parkinson’s Disease (PD). To date, only few experimental models of selective ablation of astrocytes are known. The aim of present study was to evaluate the effect of striatal injections of selective glial toxin L-aminoadipic acid (L-AA) on the loco...

متن کامل

Comparative behavioral and neurochemical studies of R- and S-1-methyl-1,2,3,4-tetrahydroisoquinoline stereoisomers in the rat.

BACKGROUND 1-Methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTIQ) is present in human and mammalian brain as a racemate (R,S) of two stereoisomers: R- and S-1MeTIQ. The racemate is a mixture of the endogenous, synthesized in the brain dextrorotary R-1MeTIQ, and the exogenous, levorotary form, S-1MeTIQ. METHODS In this study, we compared the effect of these two stereoisomers of 1MeTIQ with the race...

متن کامل

3,4-Dihydroxyphenylalanine (dopa) decarboxylase activity in the arthropod nervous system.

1. When homogenates of brains from mature adult locusts (Locusta migratoria) were incubated with l-3-(3,4-dihydroxyphenyl)[3-(14)C]alanine the major radioactive metabolite was dopamine, suggesting the presence of a dopa (3,4-dihydroxyphenylalanine) decarboxylase. 2. Decarboxylation of l-dopa by this tissue, measured under optimum conditions by a radiochemical method, was 21mumol of CO(2)/h per ...

متن کامل

Determination of some L-3,4-dihydroxyphenylalanine and dopamine metabolites in urine by means of mass fragmentography.

We describe a mass-fragmentographic method for determination in urine of the following metabolites of L-3,4-dihydroxyphenylalanine and dopamine: vanillactic acid, 3,4-dihydroxyphenylacetic acid, 3-methoxy-4-hydroxyphenylethanol, and 3,4-dihydroxyphenylethanol. Deuterated analogs were used as internal standards. The method is fast, reproducible, sensitive, and selective, and does not require the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 35 8  شماره 

صفحات  -

تاریخ انتشار 2012